當前位置:大學路 > 教育資訊 >正文

初一數學上冊的知識點,初一數學上冊考點總結

更新:2020年04月29日 20:12 大學路
高考是一個是一場千軍萬馬過獨木橋的戰(zhàn)役。面對高考,考生總是有很多困惑,什么時候開始報名?高考體檢對報考專業(yè)有什么影響?什么時候填報志愿?怎么填報志愿?等等,為了幫助考生解惑,大學路整理了初一數學上冊的知識點,初一數學上冊考點總結相關信息,供考生參考,一起來看一下吧初一數學上冊的知識點,初一數學上冊考點總結

  初中的數學很簡單的不要緊張,只要你平時認真聽課跟著老師的節(jié)奏,作業(yè)認真思考完成,初中數學不會存在大問題的,初中數學只要你認真學習還是比較好學的,不用緊張。

  代數初步知識

  1.代數式:用運算符號“+-×÷……”連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

  2.列代數式的幾個注意事項:

  (1)數與字母相乘,或字母與字母相乘通常使用“?”乘,或省略不寫;

  (2)數與數相乘,仍應使用“×”乘,不用“?”乘,也不能省略乘號;

  (3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

  (4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

  (5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;

  (6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.

  3.幾個重要的代數式:(m、n表示整數)

  (1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

  (2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;

  (3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續(xù)整數是:n-1、n、n+1;

  (4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.

  有理數

  1.有理數:

  (1)凡能寫成形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;?不是有理數;

  (2)有理數的分類:①②

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區(qū)域,這四個區(qū)域的數也有自己的特性;

  (4)自然數?0和正整數;a>0?a是正數;a<0?a是負數;

  a≥0?a是正數或0?a是非負數;a≤0?a是負數或0?a是非正數。

  2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3.相反數:

  (1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

  (2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

  (3)相反數的和為0?a+b=0?a、b互為相反數。

  4.絕對值:

  (1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經常分類討論;

  (3);;

  (4)|a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,.

  5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

  6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;倒數是本身的數是±1;若ab=1?a、b互為倒數;若ab=-1?a、b互為負倒數。

  7.有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

  (2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數與0相加,仍得這個數。

  8.有理數加法的運算律:

  (1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

  9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).

  10有理數乘法法則:

  (1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數同零相乘都得零;

  (3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。

  11有理數乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.

  12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.

  13.有理數乘方的法則:

  (1)正數的任何次冪都是正數;

  (2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

  (3)a2是重要的非負數,即a2≥0;若a2+|b|=0?a=0,b=0;

  (4)據規(guī)律底數的小數點移動一位,平方數的小數點移動二位。

  15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。

  16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。

  17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。

  18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則。

  19.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明。

  整式的加減

  1.單項式:在代數式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數式叫單項式。

  2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。

  3.多項式:幾個單項式的和叫多項式。

  4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式。

  5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式。

  整式分類為:.

  6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項。

  7.合并同類項法則:系數相加,字母與字母的指數不變。

  8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號。

  9.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并。

  10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列。

  一元一次方程

  1.等式與等量:用“=”號連接而成的式子叫等式。注意:“等量就能代入”!

  2.等式的性質:

  等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

  等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式。

  3.方程:含未知數的等式,叫方程。

  4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!

  5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項。移項的依據是等式性質1.

  6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。

  7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).

  8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).

  9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1……(檢驗方程的解).

  10.列一元一次方程解應用題:

  (1)讀題分析法:……多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程。

  (2)畫圖分析法:……多用于“行程問題”

  利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。

  11.列方程解應用題的常用公式:

  (1)行程問題:距離=速度×時間;

  (2)工程問題:工作量=工效×工時;

  (3)比率問題:部分=全體×比率;

  (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

  (5)商品價格問題:售價=定價×折,利潤=售價-成本,;

  (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πr2h,V圓錐=πR2h/3.最后,專注教育專注中小學在線*教學,是全國領先的在線輔導品牌,這邊有全國各地重點中學的一線名師,為每個孩子制定個性化*輔導方案,家長們可以來免費試聽一下。

  專注教育是美國納斯達克上市公司歡聚時代旗下教育品牌,是首批獲取網絡教育資質的企業(yè)之一。

  專注教育專注于初高中*輔導在線教學產品研發(fā)和運營,推動個性化教育普及。專注教育突破地域限制,實現優(yōu)質教育資源合理再分配,堅持從全國重點中學挑選經驗豐富的老師在線授課,學生可以足不出戶,輕松上課,高效學習。獨家研發(fā)的教學服務體系使網絡交流互動堪比面對面輔導,讓學生免去舟車勞頓,足不出戶輕松享受比線下學習更好的教學體驗。利用大數據學前評測,針對每一個學生的具體情況設計不同輔導方案,學生注意力更集中,真正做到個性化高效學習。


以上就是大學路為大家?guī)淼某跻粩祵W上冊的知識點,初一數學上冊考點總結,希望能幫助到廣大考生!
免責聲明:文章內容來自網絡,如有侵權請及時聯系刪除。
與“初一數學上冊的知識點,初一數學上冊考點總結”相關推薦

每周推薦




最新文章

熱門高校 更多




聯系我們 - 課程中心
  魯ICP備18049789號-7

2020大學路版權所有 All right reserved. 版權所有

警告:未經本網授權不得轉載、摘編或利用其它方式使用上述作品